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Sudden cardiac death, frequently due to ventricular arrhythmias, is a significant problem globally. Most affected individuals do not arrive at hos-
pital in time for medical treatment. Therefore, there is an urgent need to identify the most-at-risk patients for insertion of prophylactic implan-
table cardioverter defibrillators. Clinical risk markers derived from electrocardiography are important for this purpose. They can be based on
repolarization, including corrected QT (QTc) interval, QT dispersion (QTD), interval from the peak to the end of the T-wave (Tpeak – Tend),
(Tpeak – Tend)/QT, T-wave alternans (TWA), and microvolt TWA. Abnormal repolarization properties can increase the risk of triggered activity
and re-entrant arrhythmias. Other risk markers are based solely on conduction, such as QRS duration (QRSd), which is a surrogate marker of
conduction velocity (CV) and QRS dispersion (QRSD) reflecting CV dispersion. Conduction abnormalities in the form of reduced CV, unidir-
ectional block, together with a functional or a structural obstacle, are conditions required for circus-type or spiral wave re-entry. Conduction
and repolarization can be represented by a single parameter, excitation wavelength (l ¼ CV × effective refractory period). l is an important
determinant of arrhythmogenesis in different settings. Novel conduction–repolarization markers incorporating l include Lu et al.’ index of
cardiac electrophysiological balance (iCEB: QT/QRSd), [QRSD× (Tpeak 2 Tend)/QRSd] and [QRSD × (Tpeak 2 Tend)/(QRSd × QT)] recently
proposed by Tse and Yan. The aim of this review is to provide up to date information on traditional and novel markers and discuss their utility
and downfalls for risk stratification.
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Sudden cardiac death

Short- or long-QT intervals
increase the risk of developing
malignant ventricular arrhythmias
The opening and closing of ion channels located in the plasma mem-
brane mediate inward and outward transmembrane currents, in
turn determining the QT duration. This interval shortens with an in-
creasing heart rate. Its interpretation therefore requires correction
that can be made using by different formulae (Table 1). The most
popular method is Bazett’s formula, which is given by the QT inter-
val divided by the square root of the RR interval.1 The disadvantage
of this method is that QT interval is overestimated at high heart
rates and underestimated at low heart rates. Fridericia formula di-
vides the QT interval by the cubic root of the RR interval, and works
better for slow heart rates. Other methods include the Framingham

and Hodges formulae. The AHA/ACCF/HRS Recommendations
published in 2009 proposes an upper normal limit of a corrected
QT (QTc) interval of 450 ms for men and 460 ms for women, and
a lower limit of 390 ms for both genders.2,3 The newest European
Society of Cardiology guideline produced in 2015 suggests upper
and lower limits of 480 and 360 ms, respectively, for both males
and females.4 The risk of developing malignant ventricular arrhyth-
mias increases at either extreme of the QT interval, as exemplified
by the long- and short-QT syndromes (LQTS and SQTS).

The cellular origin of the T-wave has been the subject of intense
debate for several decades.5 – 7 The original theory was that its in-
scription is generated by a repolarization gradient between the car-
diac apex and base.8 Later work suggested that the distinct
electrophysiological properties of ventricular cardiomyocytes
from different regions, such as epicardium, mid-myocardium (M),
and endocardium were responsible.9 M-cells takes the longest to
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repolarize compared with the remaining cell types, but whether this
intramural repolarization delay occurs in vivo is controversial.10 In-
deed, it may be unmasked only under non-physiological conditions
such as gap junction inhibition.11

Pre-clinical and clinical predictors
of arrhythmic risk: the need for
new indices
Pre-clinical animal models have been useful for the studying the me-
chanisms of cardiac arrhythmogenesis in a number of settings and
provide a platform for testing the arrhythmogenic potential of
pharmacological agents.12– 16 Experiments in these systems have de-
monstrated different pro-arrhythmic factors, such as reduced CV,17

increased CV dispersion, increased or decreased action potential
duration (APD),18 increased transmural dispersion of repolarization
(TDR) given by the maximum APD difference across the myocardial
wall,19,20 increased critical interval for re-excitation given by APD—
effective refractory period (ERP) difference,21 reduced l,17 and re-
duced l-TRIaD (l, triangulation, reverse use dependence, instabil-
ity, and dispersion).22 Abnormal cardiac dynamics, reflected by
increased APD, ERP, or l restitution gradients have also been asso-
ciated with arrhythmogenesis.21,23–26

The difference between triggers and markers of arrhythmias and
sudden death can be distinguished. Triggers refer to events that pro-
duce the electrophysiological abnormalities initiating arrhythmo-
genesis, such as sleep,27 emotional stress, or exercise.28 These
may produce myocardial ischaemia that can promote slowed con-
duction, reflected in prolonged QRSd, as well as TWA. Both pro-
longed QRSd and TWA have been long recognized as a marker of
sudden cardiac death.29,30 Although both can generate arrhythmias,
they are downstream of the triggering events detailed above.

Repolarization markers
Traditional clinical markers for arrhythmic risk prediction have
largely focused on abnormal repolarization, of which QT and QTc

are archetypal examples.31 However, the limitations of QTc in pre-
dicting arrhythmogenicity led to the development of other markers,
such as QT dispersion (QTD),32 the interval from the peak to the
end of the T-wave33 (Tpeak– Tend), (Tpeak– Tend)/QT ratio,34 JTpeak/
JT, (Tpeak 2 Tend)/JTpeak and Tpeak/JT ratios, principal component
analysis (PCA) ratio,35 and J- and T-wave heterogeneities.36 Dynam-
ic changes such as TWA,37,38 microvolt TWA,39 the restitution mar-
kers Regional Restitution Instability Index (R2I2), and peak

electrocardiography (ECG) restitution slope (PERS)40,41 (Table 2).
These will be discussed in turn.

QTc and QTd
QTc was originally devised for identifying patients suffering from car-
diac ion channelopathies such as LQTS and SQTS, but its use has
been extended to a wide range of clinical conditions such as heart
failure,31 diabetes mellitus,73 and obesity.74 Prolonged QT interval
reflects prolonged APDs at the cellular level. This can lead to reacti-
vation of the L-type calcium channels,75 and subsequent develop-
ment of early after depolarization and triggered activity. However,
malignant arrhythmias such as torsade de pointes (TdP) can occur
despite a normal or even a shortened QT interval.22,76 Moreover,
QT interval has a low sensitivity and specificity for a multitude of
reasons, such as difficulty and inaccuracy in determining the end
of the T-wave, and it is altered by both autonomic input and heart
rate. QTpeak was studied as a potential marker because Tpeak is easily
determined compared with Tend.

77 However, it was not altered by
exercise or the presence of heart failure and was therefore inferior
to QTc in risk prediction. It was also recognized that QTc provided
no information on the heterogeneity of repolarization across the
heart, yet it is increased heterogeneities in repolarization that ele-
vate arrhythmic risk. This can occur when APD prolongation is non-
uniform across the myocardium or when discordant alternans are
observed, both of which can produce unidirectional conduction
block and re-entry.24

Therefore, QT dispersion (QTD) was introduced for assessing ar-
rhythmic risk in LQTS in clinical practice.78 QTD is defined as the
maximum difference between QT intervals in two leads of the
12-lead ECG. A review found that normal subjects had a mean value
of 33 ms (range 10–71 ms).79 In otherwise healthy individuals, QTD

values .58 and .80 ms were shown to increase the risk of cardio-
vascular mortality by three- and four-fold, respectively, when com-
pared with subjects with QTD values ,30 ms.32,80 QTD was found
to be significantly longer in LQTS patients who developed TdP than
those without TdP. However, logistic regression analysis showed
that it was not a reliable predictor of arrhythmogenicity.81 Similarly,
in a cohort of patients with hypertrophic cardiomyopathy, neither
QTc nor QTD distinguished mutation carriers for HOCM with
SCD/ ventricular tachycardia (VT) from those without SCD/VT.82

Nevertheless, QTD was shown to be a prognostic marker for fatal
and non-fatal cardiovascular events in diabetic patients, whether or
not they were complicated by hypertension, and was better than
QTc in this regard.83,84 In a 23-year follow-up study, it was found
that QTD was an independent predictor of cardiovascular morbidity
and mortality in type 1 diabetes, but not type 2 diabetes.73 Athletes
undergoing exercise training showed increased QTD associated
with cardiac hypertrophy.85 Whether this is associated with in-
creased risk of ventricular arrhythmias has not yet been determined.
Finally, non-linear measures of chaos in QT intervals have also been
associated with increased cardiovascular mortality.86

Tpeak 2 Tend and (Tpeak – Tend)/QT
Tpeak 2 Tend is defined as the interval between the peak of the
T-wave and the end of the T-wave, representing the dispersion of
repolarization.33 Tpeak 2 Tend was initially suggested as a marker
for TDR, based on observations in coronary-perfused canine wedge

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Different methods for QT correction

QT correction method Formula

Bazett QT/RR1/2

Fridericia QT/RR1/3

Framingham QT + 0.154 (1000 2 RR)

Hodges QT + 105 (1/RR 2 1)
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Table 2 Summary of different clinical markers based on repolarization or conduction alone, both repolarization and
conduction, and others

Classification
of risk marker

Clinical risk marker Definition Pre-clinical marker
correlate

References

Repolarization Corrected QT interval (QTc) QT interval corrected for heart rate Action potential duration
(APD)

31

QT dispersion (QTD) Maximum difference between QT intervals in
two leads of the 12-lead ECG

Difference in APD values
between two regions

32,42

Tpeak2 Tend Interval from the peak to the end of the T-wave Global dispersion of
repolarization (TDR)

33

Tpeak2 Tend dispersion Maximum difference between Tpeak2 Tend in
two leads of the 12-lead ECG

Global dispersion of
repolarization (TDR)

43

(Tpeak2 Tend)/QT Interval from the peak to the end of the T-wave
divided by QT interval

Dispersion of repolarization
divided by APD

34

JTpeak/JT, (Tpeak2 Tend)/JTpeak

and Tpeak/JT ratios
JTpeak: interval from J-point to peak of the T-wave
JT: interval from J-point to end of T-wave

Dispersion of repolarization
normalized to JT interval

44–49

JTpeak 2 JTend dispersion Maximum difference between JTpeak 2 JTend in
two leads of the 12-lead ECG

Global dispersion of
repolarization (TDR)

43

T-wave alternans (TWA) T-wave duration difference between alternate
beats

APD alternans 23,50

Microvolt TWA T-wave duration difference between alternate
beats at the microvolt level

APD alternans 51

Regional restitution instability
index (R2I2)

Gradients of QRS onset to Tpeak (QTpeak) plotted
against Tpeak to QRS onset (TpeakQ)

APD restitution gradient 40

Peak ECG restitution slope
(PERS)

Peak restitution curve slope taken as a mean
across the 12 ECG leads

Maximum APD restitution
gradient

41

J-wave heterogeneity Based on second moment analysis: maximum of
the heterogeneity waveform in the J-point

Dispersion of the junction
between depolarization
and repolarization

52

T-wave heterogeneity Based on second moment analysis: maximum of
the heterogeneity waveform in the interval
between the J-point and the end of the T-wave

Dispersion of APD 36

Conduction QRSd QRS duration, the interval between start and end
of QRS complex

Conduction velocity (CV) 30

QRSD QRS dispersion, maximum difference between
QRS durations measured in the right and left
precordial leads

† Phase difference in
conduction times of
neighbouring regions

† CV difference between
two regions

† Standard deviation of the
mean CV

53,54

R-wave heterogeneity Based on second moment analysis: maximum
value of the heterogeneity waveform in the
interval from the beginning of the Q wave to
the end of the S wave

Dispersion of dV/dtmax 36

QRS scoring (estimation of
scar size)

See reference55 55–58

Repolarization
and conduction

index of cardiac
electrophysiological
balance (iCEB)

QRSd/QT Excitation wavelength (l,
CV × effective refractory
period)

59

l-TRIaD (triangulation,
reverse use dependence,
instability, and dispersion)

(Tpeak2 Tend)/QRSd – APD dispersion, CV 60,61

(Tpeak2 Tend)/(QT × QRSd) – APD dispersion, APD, CV 60,61

QRSD × (Tpeak2 Tend)/QRSd – Dispersion of CV and APD,
CV

62

Continued

Traditional and novel ECG conduction and repolarization markers Page 3 of 10

 by guest on O
ctober 4, 2016

http://europace.oxfordjournals.org/
D

ow
nloaded from

 

http://europace.oxfordjournals.org/


preparations that the end of AP repolarization at the epicardium co-
incided with the Tpeak and at the M-cell coincided with Tend.

87 Sub-
sequent experiments in swine showed that Tpeak coincided not with
full epicardial repolarization but rather with the earliest end of repo-
larization, whereas Tend coincided with the latest end of repolariza-
tion rather than full M-cell repolarization. In other words, Tpeak 2

Tend was a marker for global, rather than transmural, dispersion of
repolarization.33,88 –90 Tpeak 2 Tend is also lead-dependent because
the dispersion of repolarization varies with different cardiac re-
gions.91 Therefore, it was proposed that it should be determined
from the right precordial leads (V4 to V6) for right ventricular disor-
ders such as BrS, from the left precordial leads (V1 to V3) for other
disorders such as LQTS.

Prolonged Tpeak 2 Tend elevates arrhythmic risk because in-
creased dispersion of repolarization predisposes to the develop-
ment of unidirectional block and therefore reentry.89,92 – 94 This
has been observed in LQTS1 and LQTS2 at baseline.95 Exercise is
known to trigger ventricular arrhythmias in LQTS1 but not
LQTS2. Greater increases in Tpeak 2 Tend were observed in
LQTS1 only, suggesting that it could be a useful risk marker for ar-
rhythmogenesis in this LQTS subtype. Moreover, Tpeak 2 Tend has
been successful in stratifying arrhythmic risk within a population of
LQTS individuals, where patients with TdP had larger Tpeak 2 Tend

than those without TdP.81 Tpeak 2 Tend is also increased in SQTS
and Brugada syndrome,96,97 consistent with pre-clinical data that
TDR is amplified in this condition.18,60,98 Outside of congenital ar-
rhythmic syndromes, it has successfully distinguished between the
following three groups of hypertrophic cardiomyopathy patients,
mutation carriers with history of SCD/VT, carriers without SCD/
VT and neither carriers nor history of SCD/VT.82 Furthermore,
Tpeak 2 Tend predicted mortality in both ST elevation and non-ST
elevation myocardial infarction (MI).99 The Copenhagen study
found an inverted U relationship between Tpeak 2 Tend and the
risk of all-cause and cardiovascular mortality, atrial fibrillation and
heart failure.100

However, one problem with Tpeak 2 Tend is that it varies with
species and heart rate, with significant inter-individual variability.101

It was found that normalizing it with the QT interval, yielding
(Tpeak 2 Tend)/QT, which has a relatively constant normal range be-
tween 0.17 and 0.23.101 This index has been shown to predict

arrhythmic risk in LQTS,95 distinguishing patients with TdP from
those without TdP.81 It has also demonstrated utility predicting ar-
rhythmic risk or mortality in Brugada syndrome,101 and other clinical
conditions such as ST elevation MI,102 diabetes mellitus,103 and
paediatric sepsis.104

Novel repolarization indices: JTpeak/JT,
(Tpeak 2 Tend)/JTpeak, and Tpeak/JT ratios
Additional repolarization interval ratios such as JTpeak/JT, (Tpeak 2

Tend)/JTpeak, and Tpeak/JT ratios have been proposed.44 – 46 Funda-
mentally, JTpeak represents early repolarization, whereas Tpeak 2

Tend represents late repolarization.47,48 In the context of QRSd pro-
longation, the JT interval also better reflects the total duration of re-
polarization than the QT interval. It was found that JTpeak/JT,
(Tpeak 2 Tend)/JTpeak, and Tpeak/JT ratios had higher sensitivity and
specificity than QT, QTpeak, JT, JTpeak, and Tpeak 2 Tend, and the ra-
tios QTpeak/QT, (Tpeak 2 Tend)/QTpeak, and (Tpeak 2 Tend)/QT, in
distinguishing patients with prior MI from those without MI.46 Re-
sults from a recent clinical trial suggested that long QTc alone
may be benign if it is not accompanied by corrected JTpeak prolonga-
tion.49 Moreover, a recent study investigated (Tpeak 2 Tend) disper-
sion and JTpeak 2 JTend dispersion as potential markers of abnormal
repolarization, which are defined as the maximum dispersion ob-
served across the different leads of the respective parameters.43

Diabetic patients were shown to have higher values of QTc, QTD,
(Tpeak 2 Tend) dispersion, and JTpeak 2 JTend dispersion than non-
diabetic patients.43 Furthermore, 16.4 and 12.7% diabetic patients
had (Tpeak 2 Tend) dispersion and JTpeak 2 JTend dispersion, re-
spectively, whereas only 7.3, 5.5, and 0% showed prolonged
Tpeak 2 Tend, QTc, and QTD, respectively. These findings suggest
the former set of indices may have higher sensitivity in detecting re-
polarization abnormalities in diabetic patients.

Principal component analysis ratio and J-
and T-wave heterogeneities
Advances in computing technology have permitted digitization of
ECG recordings and more complex analyses of ECG waveforms.
Principal component analysis is a technique used to quantify the
relative weight of different components of repolarization from the
ECG, representing the spatial complexity of repolarization.105,106

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Continued

Classification
of risk marker

Clinical risk marker Definition Pre-clinical marker
correlate

References

QRSD × (Tpeak2 Tend)/
(QRSd × QT)

– CV and APD, and their
dispersion

62

Others Ventricular premature beats
(VPBs)

Premature QRS complex Premature action potential 63–68

Non-sustained VT ≤5 closely coupled QRS complexes ≤5 closely coupled action
potentials

69,70

Heart rate variability (HRV) Several definitions – 71

Ventricular ectopic QRS
interval (VEQSI)

Duration of the broadest VPB Duration of the longest
premature action potential

72
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Previously, it was shown that the first component (eigenvector) of
the T-wave accounted for most of the energy consumed for repo-
larization under normal conditions.107 Increased contributions from
second or later components, i.e. increased PGD ratios given by se-
cond component divided by first component, reflect greater het-
erogeneity of repolarization.35

Moreover, second central moment analysis measures the hetero-
geneities observed in different ECG leads simultaneously.108 Such an
analysis has been used subsequently to examine heterogeneities in J-
and T-waves.36 J- and T-wave heterogeneities indicate disarray of
depolarization, of the junction between depolarization and repolar-
ization52 and of repolarization, respectively, all of which represent
favourable substrates for reentry.36 The Multilead ECG Template-
Derived Residua algorithm was developed to remove intrinsic mor-
phological differences to allow calculation of heterogeneities be-
tween different ECG leads.108

T-wave alternans, microvolt T-wave
alternans, regional restitution instability
index, and peak electrocardiography
restitution slope
T-wave alternans (TWA) has been associated with ventricular ar-
rhythmias and sudden cardiac death.50 They are due to alternations
in repolarization time-course (measured as APDs) at the cellular le-
vel.109 Traditionally, generation of APD alternans have been de-
scribed by restitution, using a graphical method that relates APD
to diastolic interval (DI). Restitution refers to the normal property
of the myocardium where APD shortens with increasing heart rates
and is thought to be an adaptive mechanism for maintaining diastolic
filling time at such fast rates. APD alternans can be generated by
APD restitution-dependent mechanisms when restitution gradients
becomes greater than unity.110 – 112 This is in keeping with clinical
observations that a sudden increase in heart rate, which engages
short DIs and the steeper portion of restitution curves, could pro-
duce or exacerbate TWA.113 Alternans can also arise from mechan-
isms not involving APD restitution.114 – 117 For example, abnormal
Ca2+ handling involve an imbalance between Ca2+ release from
the sarcoplasmic reticulum via ryanodine receptors and its subse-
quent reuptake by sarcoplasmic endoplasmic reticulum Ca2+-
ATPase.118,119 Other mechanisms include cardiac memory, ven-
tricular ERP (VERP) restitution, and mechano-electric feedback.
The reader is directed to the following review articles for an in-
depth discussion on the ionic and electrophysiological mechanisms
involved in TWA generation.24,109

Alternans can be spatially concordant or discordant. Discordant
alternans are thought to be more arrhythmogenic because they pro-
duce steeper gradients in repolarization and refractoriness. This can
then lead to wavebreak, local conduction block of a premature
extrasystole120 to facilitate circus-type or spiral wave re-
entry,121 – 123 as well as Phase 2 re-entry.124 TWA has been ob-
served in a number of conditions, including electrolyte abnormal-
ities, hypothermia, congenital arrhythmic syndromes such as
long-QT and Brugada syndromes, and cardiac diseases such as cor-
onary artery disease, post-MI, different forms of cardiomyopathy,
vasospastic angina, and heart failure. There is accumulating evidence
to suggest that different treatments can reduce TWA. For example,

this has been observed using chronic vagal stimulation, which im-
proved ventricular function and reduced both TWA and incidence
of ventricular arrhythmias in heart failure patients.125 Exercise re-
habilitation also reduced TWA in patients with stable coronary ar-
tery disease.126

Microvolt TWA refers to small (as the name suggests, at the mi-
crovolt level) beat-to-beat differences in T-wave duration, ampli-
tude, or morphology. Microvolt TWA has also been associated
with TdP in LQTS.39 The International Society for Holter and Non-
invasive Electrocardiology issued its consensus guideline in 2011,
discussing the use of spectral and modified moving average methods
(in the frequency and time domains, respectively) to quantify micro-
volt TWA for arrhythmic risk stratification.51 However, a sub-study
of the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT)
found no statistically significant difference in survival rates between
heart failure patients who were microvolt TWA positive and those
who were negative.127

Two ECG markers based on restitution have been devised to pre-
dict alternans formation.40,41 Firstly, R2I2 is defined as the mean of
the standard deviation of residuals from the mean gradient derived
from each ECG lead over a range of DIs. It is obtained from QRS
onset and Tpeak measurements using a S1S2 protocol. QRS onset
to Tpeak (QTpeak) was used as a surrogate of APD, and plotted
against Tpeak to QRS onset (TpeakQ), a surrogate of DI. This then
permitted the gradient, R2I2 to serve as an estimate of restitution
gradients. Increased R2I2 was observed in patients with ischaemic
cardiomyopathy compared with the control group. Secondly,
PERS was defined as the peak restitution curve slope taken as a
mean across the 12 ECG leads, reflecting maximum APD restitution
gradients. Both were shown to independently predict patients at
high risk of developing VT/VF and SCD.

Despite the usefulness of repolarization markers, repolarization
abnormalities such as TDR did not consistently predict arrhythmo-
genicity in mouse models of LQTS or SQTS.128 This is because APD
does not always coincide with ERP, as in the case of acquired LQTS.
In acquired SQTS produced by hyperkalaemia, although abnormal
TDR was observed. ERP appeared to be central in determining ar-
rhythmic tendency as hypercalcaemia treatment produced anti-
arrhythmic effects by correcting for ERP without influencing the ab-
normal TDR.18 In other cases such as Brugada syndrome, conduc-
tion abnormalities in the form of CV reduction and CV dispersion
were not taken into account. Indeed, ventricular arrhythmias to oc-
cur despite normal repolarization gradients in Brugada patients.129

Conduction markers
Normal cardiac excitation involves the an orderly wave of depolar-
ization that is conducted from the sinoatrial node to the ventricular
myocardium.130 Abnormalities in this depolarization or conduction
process can predispose to the development of arrhythmias.131,132

Markers based on such abnormalities include QRS duration
(QRSd), QRS dispersion (QRSD), R-wave heterogeneity, and QRS
scoring.

QRSd, QRSD, and R-wave heterogeneity
CV dispersion is a broad term encompassing phase difference in
conduction times of neighbouring regions,133 difference in CV

Traditional and novel ECG conduction and repolarization markers Page 5 of 10

 by guest on O
ctober 4, 2016

http://europace.oxfordjournals.org/
D

ow
nloaded from

 

http://europace.oxfordjournals.org/


across the myocardial wall93 and standard deviation of the mean
CV.134 Increased CV dispersion has been observed in a pharmaco-
logical model of gap junction and sodium channel inhibition,135 and
genetic systems with downregulation of connexin 43, the principal
component of gap junctions.93,133,134 In these models, arrhythmo-
genesis took place despite unaltered CV,133,136 – 140 thereby impli-
cating CV dispersion as an additional pro-arrhythmic factor that
must be taken into account. Electrocardiographically, can be used
as a surrogate of CV dispersion, and is defined as the maximum dif-
ference between QRSd measured in the right and left precordial
leads.53 It was first noted in arrhythmogenic right ventricular cardio-
myopathy, a condition characterized by fibro-fatty replacement of
right ventricular myocardium that leads to asynchronous activa-
tion.53,54 QRSD was found to be the strongest independent predict-
or of SCD when compared with other parameters such as QTD,
negative T-wave beyond the V1 lead, and syncope.141 QRSD also
predicted SCD in congestive heart failure142 and correlates well
with left ventricular systolic dysfunction.143 Finally, R-wave hetero-
geneity represents disarray or dispersion in depolarization, which is
pro-arrhythmic.36

QRS scoring
The Selvester QRS scoring system was first devised to quantify and
localize myocardial scarring based on subtle changes in ventricular
depolarization as determined from the ECG.56 –58 The revised sys-
tem permits this analysis even in the presence of confounders, such
as bundle branch and fascicular blocks and ventricular hyper-
trophy.55 This was validated against the use of cardiac magnetic res-
onance imaging with late gadolinium enhancement in patients with
ischaemic and non-ischaemic cardiomyopathy.55,58 Increases in
this revised QRS score were shown to predict the occurrence of
ventricular arrhythmias, the need for ICD shocks, prognosis,144

and reduced reverse LV remodelling.145 These were also associated
with TWA in heart failure with preserved ejection fraction.56

Novel conduction–repolarization
indices for risk stratification: the
importance of conduction slowing
and conduction dispersion
From the above considerations, it is clear that both conduction and
repolarization, represented by l, is required to explain arrhythmo-
genesis. Indeed, pre-clinical studies demonstrated that l was the
best predictor of arrhythmic tendency, increasing with
pro-arrhythmic conditions and decreasing by anti-arrhythmic ther-
apy.18,25 However, a major disadvantage of l is that it must be de-
termined invasively by electrophysiological studies in the clinical
setting. Based on the principle of l, Lu et al. proposed a novel index
of cardiac electrophysiological balance (iCEB), given by QT/QRSd

(both QT and QRS in milliseconds, with a dimensionless index).59

This has demonstrated utility in predicting cardiac arrhythmias after
administration of drugs such as dofetilide, digoxin, and isoprenaline
in rabbit perfused-wedge preparations.59 It was subsequently vali-
dated in humans also in the presence of drugs, LQTS, and Brugada
syndrome.146

Recently, Tse proposed that iCEB should be modified from QT/
QRSd to produce the following indices: (Tpeak 2 Tend)/QRSd and
Tpeak 2 Tend/(QT × QRSd).60,61 This is based on pre-clinical find-
ings that increased dispersion of repolarization is a pro-arrhythmic
factor,18,21 in keeping with clinical studies demonstrating that
Tpeak2 Tend and (Tpeak2 Tend)/QT were superior to the QTc in ar-
rhythmic risk stratification.147 Moreover, Tse and Yan further modi-
fied Tse’s indices, yielding QRSD × (Tpeak2 Tend)/QRSd and
QRSD × (Tpeak2 Tend)/(QT × QRSd).62 Their reasoning was that
increased CV dispersion is also an important determinant of ven-
tricular arrhythmogenesis, but these indices remain to be validated
clinically. Future work can take advantage of the ability of cardiac
magnetic resonance imaging to characterize structural abnormalities
with high resolution, in combination with magnetocardiography for
risk stratification.55,148,149

Other risk markers: ventricular
ectopy, non-sustained ventricular
tachycardia, heart rate variability,
and ventricular ectopic QRS
interval
In addition to repolarization and conduction abnormalities, other
markers have been associated with increased arrhythmic risk, in-
cluding ventricular ectopy (ventricular premature beats, VPBs),
the presence of non-sustained VT (NSVT), heart rate variability
(HRV), and the ventricular ectopic QRS interval (VEQSI). In 1969,
a higher incidence of SCD was observed in individuals who had ven-
tricular ectopy compared with those who did not.63 Furthermore, in
patients with coronary artery disease, the presence of VPBs in-
creases the risk of death by two-fold, even correcting for the risk
factors of CAD.64 Apart from the presence of VPB, its morphology
is also important,65 such as higher QRSd

66,67 and notching of the
peak.68 Furthermore, a higher risk of death is observed in patients
with NSVT compared with those without NSVT.150 NSVT was pre-
dictive of all-cause and arrhythmic mortality,69 but not after adjust-
ing for ejection fraction.70 HRV initially demonstrated promise but
was later shown not to be predictive of arrhythmic mortality.67,71

Finally, VEQSI, defined as the duration of the broadest VPB, was
shown to be a marker of structural heart disease, correlated with
left ventricular function and distinguished post-MI patients with
prior life-threatening events from those without previous episodes
of ventricular arrhythmias.72

Conclusion
In this article, we reviewed the different clinical markers based on
abnormalities in repolarization, conduction, or both. It was empha-
sized that dispersions of repolarization and conduction should all be
taken into consideration for accurate prediction of an individual’s ar-
rhythmic potential. These ECG markers of varying complexity can
be used in different settings. Clearly, in daily patient care by the bed-
side or in the clinic, patients may initially require a quick evaluation
of arrhythmic risk. Traditionally, this has involved determination
of QTc. We propose that both QRS prolongation and iCEB be
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incorporated in this initial risk stratification. Invasive electrophysio-
logical studies, where patients’ hearts can be subjected to stimula-
tion protocols such as S1S2 pacing, will continue to provide
important information for risk stratification. Their use can yield
the novel markers, such as R2I2 and PERS recently proposed.40,41

These invasive markers can be combined with complex non-invasive
markers, which require calculations and derivation of information
from several precordial leads. This holistic approach would then re-
present a comprehensive risk assessment of the patient. However,
at the moment, these complex markers are used in epidemiological
studies and not routinely. Eventually, once these have proved their
clinical utility in terms of sensitivity and specificity, we expect these
markers to be used widely in clinical practice. This will require the
development of user friendly apps on mobile devices. These apps
can be designed to automatically calculate the indices when the ba-
sic parameters are input by the clinician, yielding useful information
such as ‘high, ‘medium or low risk’ of developing ventricular arrhyth-
mias to facilitate and streamline patient management.
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